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Abstract
Micropropagation of important forestry, horticultural and medicinal plants have 
made revolutionary changes in terms of research and commercialization. 
However, there are a variety of factors which influence the scaling-up 
and commercialization aspects, which decide whether mass propagation  
will be effective and lucrative. Low rates of shoot multiplication, increased 
costs of media components, loss of cultures due to contamination,  
and difficulties with hardening and acclimation are the key obstacles to 
scaling up micropropagation technology. These restrictions have forced  
a large number of in vitro technologies developed for a range of plant species 
to be used only under research laboratories settings. To apply tissue culture 
technology to large-scale propagation, it is required to develop techniques 
that are relatively simple to adopt, have high multiplication rate with high levels 
of reproducibility, and exhibit higher survival of plantlets when transferred to 
ex vitro conditions. Efficient techniques include utilization of liquid culture 
systems and replacement of agar with other gelling agents. These techniques 
allow development of micropropagules that not only function better in post-
vitro soil conditions and are comparatively less expensive, but will also help 
develop a workable micropropagation technique that can be applied to the 
mass production of desirable plant species. The current review describes 
liquid culture system as an efficient approach to produce large number  
of plants at low production cost.
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Introduction
In the last decade, plant tissue culture has proved 
its significance in several areas of research and 
commercialization. These include: a) CRISPR-CAS-9 
mediated improvement of crops, b) commercial 
production of horticulture and medicinal plants,  

c) transgenic plant development, c) in vitro production 
of important secondary metabolites, d) production  
of novel varieties through embryo rescue and haploid 
culture, e) germplasm conservation.1 Tissue culture 
methods are generally used to improvise the plants 
which do not produce seeds or have stubborn 
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seeds that can't be stored in seed gene banks 
under normal capacity settings. In order to maintain 
quality of plantlets, in vitro procedures have been 
proved to be very useful in various roots and tubers, 
ornamental plants, medicinal plants, and several 
other tropical fruit plants. Plant tissue culture was 
initially utilized as a research method with a primary 
goal of cultivating and studying the development  
of tiny, isolated plant tissue pieces or isolated cells.1

Plant tissue culture has gone through numerous 
stages of progress, including logical curiosity,  
a research tool and innovative applications, similar 
to other advanced methods. Micropropagation 
technology is a technique for in vitro propagation 
of plants by using principles of biotechnology.  
The plants are derived from taking initiation 
material like stem part, root part or leaf tissues 
and the technique developed guides in large scale 
production of economically important crops varieties. 
Singh et al. (2016) has enlisted key characteristics 
of micropropagation technique, which include  
a regulated environment, managed plant growth, 
and product (micro-propagules) that are free of many 
pests and diseases.2 Due to the propagated plants' 
compact size, nursery space and plant transportation 
expenses are reduced. The biggest drawback  
of tissue culture plants is how expensive they are  
to produce. A variety of plants intended for commercial 
tissue culture propagation are constrained by  
this challenge.

Plant organs and tissues are cultured in vitro on 
artificial media, which supply the nutrients vital for 
development. The progress of micropropagation 
as a method for plant propagation is enormously 
impacted by the type and concentration of the 
culture medium components used. Generally,  

in any tissue culture medium, the components are 
majorly classified in four groups excluding sucrose 
(carbon source) and agar (solidifying agent). 
These groups are: a) Macronutrients (Nitrogen, 
Potassium, Phosphorus, Magnesium, Sulphur),  
b) Micronutrients (Manganese, Boron, Zinc, Cobalt, 
Copper), c) Iron and chelating agents (FeSO4 and 
EDTA) and d) organic supplements (vitamins and 
amino acids). The most commonly utilized medium is 
the one described by Murashige and Skoog (1962). 
This medium was ideally developed for growth  
of tobacco callus and later on it was proved beneficial 
for wide range of species with slight modifications.3

In addition to these inorganic supplements, 
plant tissue culture medium often provides  
a carbohydrate (sucrose is typically standard)  
to substitute the carbon that a plant normally fixes 
from the air through photosynthesis. As mentioned 
above, numerous media also include various 
organic substances, vitamins, and plant growth 
regulators to promote development. In early trials 
of research in development of growth media, 
undefined components like natural plant products, 
yeast extracts, protein hydrolysates etc. were 
utilized instead of defined nutrients or amino acids, 
or even as additional supplements. Coconut milk, 
for example, is still frequently utilized, and banana 
homogenate has been a famous expansion to media 
for orchid culture. There are certain precautions, 
which are needed to be followed while designing 
and development of medium. For example, there 
should not be any changes in laboratory conditions 
and type of inorganic or organic salts (for instance 
the hydration of compounds). Table 1 shows general 
composition of plant tissue culture medium, which 
is followed by most of the researchers.

Table 1: List of inorganic/organic salts, carbon source, vitamins, and solidifying 
agents used in generalized plant tissue culture media

Sr. No.	 Components	 Elements	 Inorganic/Organic salts

1	 Macro-elements	 Nitrogen (N)	 NH4NO3

			   (NH4)2SO4

		  Potassium (K)	 KNO3

			   KCl
			   KH2PO4

			   K2SO4

		  Calcium (Ca)	 Ca(NO3)2.4H2O
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			   CaCl2.2H2O
		  Magnesium (Mg)	 MgSO4.7H2O
		  Sodium (Na)	 Na2- EDTA
			   NaH2PO4.2H2O
			   Na2SO4

		  Ferrous (Fe)	 FeSO4.7H2O
2	 Micro-elements	 Potassium (K)	 KI
		  Boron (B)	 H3BO3

		  Ferrous (Fe) 	 Fe2(SO4)3

		  Manganese (Mn) 	 MnSO4.4H2O
		  Zinc (Zn)	 ZnSO4.7H2O
		  Sodium (Na)	 Na2MoO4.2H2O
		  Copper (Cu)	 CuSO4.5H2O
		  Cobalt (Co)	 CoCl2.6H2O
3	 Vitamins	 Calcium pantothenate	
		  Thiamine HCl	
		  Inositol	
		  Nicotinic acid	
		  Pyridoxine HCl	
4	 Amino acids	 Glycine	
		  Cysteine HCl	
		  Glutamine	
5	 Carbon Source	 Sucrose	
6	 Solidifying agents	 Agar

Liquid Medium as an Efficient Approach for 
Tissue Culture
In plant tissue culture, generally semi-solid medium 
is used for regeneration and other purposes. 
However, there are several constrains in using 
semi-solid medium for example, high production 
cost, less protocol efficiency and multiplication rate, 
high contamination rate and somaclonal variations, 
which arise during culture conditions.4 The high 
prices of media have restricted the widespread 
adoption of the plant tissue culture application.5 
Low plantlet production rates, high labour costs, 
and increased space requirements continue to 
be the barriers in adoption of semisolid media 
for commercial production.6 In order to produce 
valuable and affordable in vitro plantlets, the proper 
selection of media components should be taken into 
account. Liquid culture media have been employed 
as an effective way to address the problems which 
arise during the use of semisolid medium and also 
enable the researchers or commercial producers 
in development of automation and cut down 
both time and cost.5,7 Uniform culture conditions, 
quick media replacement without changing the 
container, sterilisation with ultra-filtration, and 

simpler container cleaning after use are all benefits 
of liquid culture systems. Agar culture media require 
surface culturing of tissues, whereas liquid culture 
media allow for the use of containers of various 
capacities.8,9 Faster growth rates, efficient nutrient 
absorption by tissues, and dilution of secreted growth 
inhibitors, such as phenolics produced by explants, 
all represent potential advantages of liquid culture 
systems over solid cultures.10

Plant tissues/ explants of various species have 
shown improved performance in liquid medium as 
opposed to solid or semi-solid medium.11 Acacia 
nilotica shoot numbers were around ten times higher 
in liquid culture than in gelled culture.12 However, 
liquid culture is characterised by excessive humidity 
and a restricted exchange of gases between the 
interior atmosphere of the culture vessel and its 
surroundings. These circumstances might lead  
to physiological illnesses such as hyperhydricity.  
If liquid culture is defined as the growing of explants 
on a nonsolid media, then other changes to the 
fundamental system are feasible. Explants are 
placed in a static liquid solution in the most basic 
liquid culture methods. For instance, thousands  
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of embryos may be produced from androgenic pollen 
grains of wheat in a static liquid culture. Modifications 
include aeration, which involves bubbling air through 
the medium, use of a support for the explants 
(such as cellulose substrate), shaking the culture 
to maximize contact between the medium and 
explants. Temporary immersion system, in which the 
explants are submerged and removed in the medium 
for varying lengths of time are also very efficient 
methods apart from use of bioreactors (closed or 
open). Scaling up and utilization of bioreactors for 
commercial production, as well as the development 
of organ-genic propagules like bulblets, have all 
been studied in detail.13,14 While it is outside the 
purview of this work to evaluate all occurrences and 
implications described in liquid culture, the process 
by which liquid culture can control plant growth 
and development is covered. Growth rates and 
morphogenetic patterns are used to demonstrate 
the advantages of liquid culture over traditional 
gelled medium, while the drawbacks are underlined.  
The role of certain chemical variables in coordinating 
growth and development is also discussed.

Explants cultivated in solid media will display polarity 
in their response and cells that are not in direct touch 
with the medium must absorb nutrients and process 
regulatory signals by diffusion from nearby cells.  
This may result in the peripherally placed cells 
sensing a different signal. Since the entire surface  
of the explant is immersed in the medium and 
may thus sense chemical signals, this condition is 
avoided in liquid culture. The decrease in the harmful 
effects of toxins is another benefit of adopting 
liquid systems for culturing. Any metabolite that the 
explant releases into the media may have harmful 
or inhibiting effects on subsequent growth and/or 
development. Toxins quickly dilute in liquid systems, 
as opposed to solidified media, where released 
compounds stay near to the explant, lessening any 
possible inhibitory impact. Liquid cultures often 
have higher rates of multiplication and proliferation 
than traditional gelled cultures. According to Kim 
et al (2003), garlic shoots on solidified cultures 
showed a decrease in the growth rate and fresh 
weight of shoots.15 Explants produced on liquid 
medium for potato micropropagation showed faster 
shoot development rates than explants cultured 
on solidified media.16 Sugarcane meristems were 
cultivated in both liquid and solid medium as well as 
in a transient immersion system, and17 compared the 

growth rates of these meristems.15 In some cases, 
strangely, the growth rates of the liquid and solid 
media did not differ much, whereas the temporary 
immersion system yielded a growth rate that  
was double than that of the other two techniques.18

In liquid culture, shoots of Pinus radiata, tea, wild 
pear, and Calotropis gigantea have all shown 
better rates of multiplication, when compared with 
explants grown on agar-solidified media.19-21 When 
cultivated in a liquid-shake culture, aspen root 
cultures quickly increased in biomass.22 But faster 
development rate in a liquid environment is not  
a general occurrence. Suspension culture offers  
a lot of promise for reproduction and the generation 
of synthetic seeds since it can result in the formation 
of many somatic embryos. After just eight weeks  
in culture, one gram of embryogenic callus from 
coffee leaves may generate 1.2 × 105 somatic 
embryos under ideal development circumstances. 
According to Gawel et al (1990), liquid cultures 
generate more cotton somatic embryos than gelled 
cultures do.23 A number of factors have been put forth 
as the causes of this improved growth rate, including 
better nutrient availability,16,24 increased water 
availability,25 a less pronounced gradients in nutrients 
and endogenous hormones, and a more gradual pH 
shift throughout culture,23 removal of polarity, and 
a lessened impact of toxins. According to Singha 
(1982), decreased diffusion resistance and tighter 
contact between the explant and culture media 
lead to greater availability of nutrients and water.24 
However, there was no appreciable difference 
in the water content of micropropagated potato 
shoots between liquid and solid cultures. Increased 
carbohydrate and organic nitrogen build up led to 
an increase in shoot fresh weight, indicating that 
liquid culture favours nutrient digestion.16 Depending 
on the species, kind of explant, and particular 
culture circumstances, growth rate increases may 
be caused by increased carbohydrate build up, 
increased water intake, or a combination of the two.

In contrast to gelled cultures, where depletion zones 
(gradients) do form around the explant, agitation 
of a liquid culture enables uniform dispersion  
of nutrients and growth-promoting agents.  
This is helpful because in agitated liquid cultures, 
the concentrations can be maintained uniformly, 
whereas the action of exogenously administered 
growth regulators frequently fluctuates with 
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concentration. Additionally, culture agitation results 
in higher explant aeration and, thus, increased 
growth rates26. Microspores are grown in a liquid 
media with developing ovaries to produce haploid 
wheat plants. As a "nurse culture," the ovaries 
release substances needed by growing microspores 
to finish androgenic development and form a haploid 
embryo.27 Nevertheless, an extract made from 
immature ovaries did not promote androgenesis, 
indicating that ovaries actively create the necessary 
factor(s) in response to the physical environment of 
the liquid media. In order to ensure that all elements 
and regulators are dispersed uniformly throughout 
the media, androgenic differentiation will profit from 
the diminished barrier to diffusion.

Regeneration in Liquid Culture System
Somatic embryogenesis is the process through 
which a non-zygotic cell grows into a bipolar 
structure that resembles a zygotic embryo without 
having a vascular link to the original tissue.28  
In order to research different facets of embryogenesis, 
somatic embryos are employed as a model system. 
The possibility for extensive vegetative reproduction 
is perhaps the biggest benefit of creating somatic 
embryos. This method enables the production  
of genetically homogeneous plants from a superior 
parent as well as the multiplication of plants that are 
thought to be challenging to replicate. Furthermore, 
research involving genetic transformation benefit 
from the generation of a lot of embryogenic calli 
in liquid culture.29 Establishing the proper kind 
of suspension culture is necessary for somatic 
embryogenesis to take place in liquid culture. 
Large vacuolated cells in suspension are frequently 
produced by undifferentiated callus and perish after 
two weeks. When the callus is triggered on a media 
that contains an auxin like 2,4-Dichlorophenoxyacetic 
acid (2,4-D) however, an embryogenic suspension 
can be produced; these cells are typically smaller 
and have dense cytoplasm. The development  
of embryogenic callus occurs in asparagus 
when the kind and ratio of the hormones alter. 
When the hormone combination of Indole Acetic 
acid (IAA), Benzyl Adinine (BA), and 6-(γ,γ-
Dimethylallylamino)purine(2-iP) was substituted with 
kinetin and 2,4-D, globular callus clumps were seen.  
In contrast, Ophiopogon japonicus suspension cultures  
do not need plant growth regulators to produce 
somatic embryos.30

For the formation of somatic embryos and 
subsequent plant regeneration in some species, 
huge numbers of embryogenic cells or cell clumps 
are produced in suspension cultures, filtered, and 
then plated on solid media.31 In these situations, the 
liquid phase of the culture serves just to promote 
cell multiplication, while keeping the individual 
cells and cell clumps in an embryogenic condition.  
In their study, Jayashankar et al. (2003), examined 
somatic embryos produced in both solid and 
liquid environments. These authors noted that 
although embryos derived from a solid media 
had big cotyledons, a poorly formed suspensor, 
and a relatively underdeveloped concave apical 
meristem, those obtained from a liquid medium 
had smaller cotyledons, a distinct suspensor, and  
a flat-to-convex shoot apical meristem. Embryos 
from the liquid media did not demonstrate dormancy, 
in contrast to those from the solidified medium, 
and they had high rates of plant regeneration.32 
What characteristic of the liquid medium is able  
to keep cell clumping in an embryogenic state is still  
a mystery? It is most likely a result of several variables 
working together. For instance, increased availability  
of metabolites and growth-regulating compounds 
that can be absorbed by all areas of the explant 
(owing to closer contact with the medium) along 
with lowered nutritional gradients all likely help to 
preserving the embryogenic potential of the culture.

Secondary Metabolites Production in Liquid 
Culture System
Plants create a wide range of organic substances 
known as secondary metabolites to help them 
interact with their biotic environment and develop 
defensive mechanisms.33,34 The majority of secondary 
metabolites, including terpenes, phenolics, and 
alkaloids, are categorised based on their biosynthetic 
origin, exhibit a variety of biological activities, and 
are employed as biopesticides, agrochemicals, 
medicines, flavouring agents, perfumes, colours, 
and food additives. Field cultivation for the purpose 
of producing secondary metabolites has a number 
of drawbacks, such as poor yields and concentration 
swings resulting from environmental, seasonal, 
and geographic differences. In order to produce 
secondary metabolites, plant cells and cultures have 
therefore become appealing alternatives (Table 2).
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Table 2: Reported plants species producing secondary metabolites under in vitro conditions

Sr. No.	 Plant Species	 Secondary metabolites reported	 References

1.	 Capsicum chinense	 Capsaicin	 [35]
2.	 Salvia castanea	 Tanshinone	 [36]
3.	 Papavar orientale	 Morphine	 [37]
4.	 Astragalus membranaceus	 Isoflvonoid	 [38]
5.	 Psoralea corylifolia	 Daidzin	 [39]
6.	 Bacopa monnieri	 Bacoside	 [40]
7.	 Catharanthus roseus	 Vinblastine, vincristine	 [41]
8.	 Chlorophytum borivilianum	 Saponin	 [42]
9.	 Camptotheca acuminata	 Camptothecin	 [43]
10.	 Isoplexis canariensis 	 Canarigenin, uzarigenin,  	 [44] 
		  digitoxigenin, xysmalogenin
11.	 Ruta graveolens	 Psoralen, bergapten, xanthotoxin, 	 [45]
		  isopimpinellin, imperatorin, umbelliferon
12.	 Salvia officinalis	 Carnosol, carnosic acid, rosmarinic acid	 [46]
13.	 Tripterygium wilfordii	 Triptolide, wilforgine, wilforine	 [47]
14.	 Rosa hybrida	 Anthocyanin	 [48]
15.	 Panax ginseng	 Ginsenoside	 [49]
16.	 Genista tinctoria	 Isoflavones	 [50]
17.	 Nothapodytes nimmoniana	 Camptothecin	 [51]
18.	 Ruta graveolens	 Psoralen, bergapten, xanthotoxin,	 [52]
		  isopimpinellin
19.	 Securinega suffruticosa	 Securinine, allosecurinine	 [53]
20.	 Withania somnifera	 Withanolides	 [54]

Bioreactors
Plant tissue, cell, and organ cultures have been 
acknowledged as potent tools for the clonal 
propagation of commercially significant crops 
(micropropagation), the production of valuable 
secondary metaboli tes, the expression of 
complex foreign proteins (molecular farming), 
and phytoremediation of waste waters (Phyto 
transformation and phytoextraction). It is possible 
to cultivate plant cultures on a large scale using 
liquid media in vitro under controlled environmental 
conditions in bioreactor systems. These plant 
cultures can be differentiated (embryos, shoots, 
seedlings, transformed or adventitious roots),  
or dedifferentiated (suspended cells). The main goal 
of the strategy is to produce as much plant biomass 
as is economically viable, ready for immediate use 
or for later separation of valuable products.

The bioreactor is a piece of specialised technology 
that controls numerous physical and/or nutritional 
parameters to enable intense culture. Systems 

using bioreactors typically include a culture vessel 
and an automated control block. The culture vessel 
is made to hold the grown cells in an aseptic 
environment while enabling options for maintaining 
ideal micro-environmental conditions, nutrients, and 
gaseous mass transfers to ensure their maximum 
development. The automated control block is a 
computerised, fully automated or semi-automated 
system that is intended to monitor and regulate 
the cultivation conditions in the culture vessel, 
including the agitation speed, temperature, dissolved 
oxygen and carbon dioxide (CO2) concentrations, 
illumination regime, pH, composition of the overlay 
gaseous environment, and the level of the liquid 
medium. Existing bioreactors may be divided into 
four major categories based on the makeup of the 
environment in which the grown cells are housed: 
liquid-phase bioreactors, gas-phase bioreactors, 
temporary immersion systems (TIS), and hybrid 
bioreactors. The cultured cells/ tissues are fully 
submerged in a liquid nutrient solution in liquid-
phase bioreactors. The best researched systems  
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at the moment are liquid-phase bioreactors, which 
include mechanically agitated, pneumatically 
agitated, hydraulically agitated, and membrane 
bioreactors. These systems have nearly infinite 
potential for use in generating undifferentiated plant 
cell suspension cultures.55

However, liquid-phase bioreactor methods often 
are unable to guarantee adequate development 
of differentiated plant in vitro systems. Because  
of hypoxia and hyper-hydricity, total submersion  
of plant tissue or organ cultures in the liquid media 
frequently results in deformities and material loss. 
Asphyxia and hyper-hydria are unfavourable 
physiological states that are solely brought on 
by the culture media's low oxygen concentration 
and water potential.56 The creation of bioreactors 
with a sophisticated design, capable of supplying  
a specialised microenvironment in order to ensure 
the growth and physiological integrity of the 
cultures, is necessitated by the complex morphology  
of differentiated plant tissue and organs.57 Gas-phase 
bioreactors TIS, and hybrid bioreactors58,59 have 
been created to solve the problems that currently 
exist. The goal of TIS is to decrease physiological 
problems and retain the morphological integrity  
of fast-growing differentiated plant in vitro cultures 
by creating an ideal environment, improving nutrition 
and gas exchanges, and lowering mechanical stress. 
In TIS, explants are regularly submerged in a liquid 
media and subsequently exposed to a gaseous 
atmosphere, providing the most natural environment 
for plant tissue and organ in vitro cultures57 TIS has 
been developed in many forms and is often used in 
the commercial micropropagation of commercially 
significant plant species. TIS have also been used 
in the study of secondary metabolite synthesis, 
molecular farming, and even phytoremediation  
of hazardous substances57 because to its straight 
forward design and adaptable functioning.

Temporary Immersion System (TIS):  A 
Modification In Liquid Culture System
The original idea for TIS was developed by 
scientists in 1983, when they created a device 
called "auxophyton" that could combine aeration and 
liquid media cultivation.60 Auxophyton rotated the 
culture containers on a wheel, alternating exposing 
the test plants to air or submerging them in liquid. 
The carrot tissue was 2.6 times heavier after 20 
days than the tissue grown on an agar medium.5 

Earlier attempts in growing carrot tissue cultures 
completely immersed in water failed, probably 
for lack of oxygen.61 TIS-based bioreactors have 
experienced several developments since that 
time. However, every device complies with the 
specifications given by Teisson et al.,62 including: 
(a) no continuous immersion, (b) sufficient mixing 
and OTR, (c) consecutive medium changes and 
automation, (d) low shear stress, contamination 
and costs. Different plant species have indicated 
that TIS has good impacts on shoot proliferation,63 
shoot vigor,64 SE,65 plant material quality.66 as 
well as micro cuttings and microtuberization.67,68  
The most important factors determining the 
effectiveness of TIS are hyperhydricity and adjusting 
the immersion time.69,70

Hyperhydricity: a Disadvantage in Liquid Culture 
System
Although liquid culture techniques often promote 
greater, more rapid multiplication and biomass build 
up, there are several species that are not suited for 
liquid cultures because they are more likely to exhibit 
physiological abnormalities called hyperhydric 
syndrome.71 The normal soil environment is 
produced by solid medium for terrestrial plants. 
Usually, explants that are totally submerged in 
growing media have the morphological alterations 
common to plants from liquid environments. 
Hyperhydricity, a condition where plants store too 
much water in their tissues, can occur in these 
situations.72 The stems of hyperhydric shoots are 
transparent and brittle, contain a lot of water, and 
have a severe lack of chlorophyll, among other 
physiological abnormalities. Shoots with excessive 
water content frequently have thick, elongated, 
curled, and wrinkled leaves.73 They have fewer 
layers of palisade cells, wide intercellular gaps, 
chloroplast degeneration, uneven stomata, and 
a very thin cuticle with less cellulose when seen 
anatomically. Because there is so much water in the 
apoplastic gaps of hyperhydric tissues, they have 
reduced dry biomass.74

The plant material may occasionally still be unable to 
develop even after the transfer of the hyperhydrated 
tissues to the solid medium to restore the plant  
to a normal state.75 Later phases of plant growth 
may experience ramifications from the vitreous 
effect. Additionally, proliferating hyperhydric shoots 
have trouble establishing roots, as seen in the cases  
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of Salvia officinalis46 and Centaurium erythraea.75 
This is not always the case and can be observed 
as exception as we can see in other plants, like in 
case of Catharanthus roseus liquid culture system 
did not prevent the subsequent formation of roots 
on the shoots but actually aided in the process.41 
The shoots also rooted more quickly, showed 
higher percentages of rooted shoots and numbers 
of roots on a single shoot, and were longer than 
the plants grown in the solid medium. Most of the 
time, the process of acclimatising rooted shoots 
is independent of the consistency of the growing 
medium and has no impact on the survival rate. 
Even more has been said about how rooting in liquid 
may forecast a later stage of micropropagation since 
there is less chance of root system injury during soil 
transplanting.41 A large decrease in the generation 
of bioactive metabolites in the morphologically 
altered organs may be another unfavourable effect 
of hyperhydricity.76 This phenomenon manifests 
as a result of several stressful circumstances, 
such as extreme humidity. A gaseous restricted 
environment with low oxygen concentration may 
cause hyperhydricity. Hypoxia can result from the 
extra water in the tissues reaching low saturation 
levels.19 Free radical-induced oxidative stress 
can harm tissues and cells and interfere with 
their metabolic processes. Normal development  
is disturbed as a result of all these variables. 
Agitation might produce aeration, however certain 
species are delicate to the shear stress and 
mechanical damage brought on by shaking the 
culture. Hyperhydricity may be markedly increased 
by exogenously applying cytokinin to a liquid 
media, especially at high doses.77 In the meantime,  
the medium is frequently supplemented with cytokinin 
to promote the development and proliferation  
of in vitro shoots.

Role of Support Matrix in Liquid Culture System  
Many methods for supporting plants over stationary 
liquid to lessen hyperhydricity have recently been 
investigated. Support matrix facilitates continuous 
and simple nutrient absorption, while permitting 
shoot development at very high levels of aeration. 
It enables dangerous phenolic exudates to spread 
throughout the media. Furthermore, the shear stress 
and mechanical damage brought on by the aeration 
and agitation associated with shake flask cultures 
are eliminated by the supports' static nature.78 
For most plant systems to multiply, root well, and 

anchor better in various types of culture containers, 
some sort of solid matrix is also fundamentally 
necessary. The addition of expensive gelling 
agents, as well as the cost of washing and cleaning, 
are avoided when support matrices are used.  
The likelihood of contamination can be decreased 
during the maintenance of these types of cultures 
since subculturing is only possible with the addition 
of sterile liquid medium.79,80 However, when 
employed, a mechanical support should be porous, 
inert, non-toxic, resistant to plant digestion enzymes, 
and autoclavable. There are currently several 
mechanical supports available, and many people 
have successfully used them in various industrial 
systems. The majority of the time, a significant 
decrease in manufacturing costs favoured overall 
growth. For instance, cotton fibre costs around $2/
kg, whereas agar costs between $100 and $200/
kg. Similar to that, apple rootstock was rooted 
using a matrix made of sugarcane bagasse.81  
A high-quality plant cultivated on sugarcane bagasse 
was significantly (13.4%) less expensive than one 
grown on agar-gelled media. A cost reduction  
of roughly 35% was made possible when the 
quantity of high-quality rooted plants exceeded 1000.  
In order to cultivate ginger and turmeric at a lower 
cost than agar,82 successfully employed glass beads. 
In his testing, there was a 94% decrease in the cost  
of the media. He also showed that only 15 to 18 
ml of media were needed per culture container (an 
Erlenmeyer flask with a 100 ml capacity) when glass 
beads were employed as support matrices. As a 
result of this technique, the price of medium was 
significantly reduced because one litter of media 
created 50 cultured vessels (only 30 containers are 
filled in the case of agar-gelled semi-solid medium).

Plants of ginger and turmeric proliferated as well on 
liquid glass bead media as they did on agar-based 
medium. For vanilla, a similar kind of reaction was 
seen. Even with a modest vitrification, Ficus cv. 
"Mini lucii" had a greater rate of multiplication. On 
glass bead liquid-medium, Saintpaulia, Syngonium, 
Philodendron, and Spathiphyllum also showed faster 
multiplication rates and better growth.82 Glass beads 
were employed by McLeod and Nowak (1990) to 
propagate raspberry and white clove plants, and they 
claimed a 60 percent media cost savings as a result. 
Glass beads were effective in maintaining callus and 
shoot organogenesis in Rhododendron. After being 
washed with acid, the beads can be utilised again. 
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An effective strategy for the speedy and inexpensive 
in vitro multiplication of certain commercially relevant 
plant species was glass bead-supported liquid 
media, such as Celastrus paniculatus, Chlorophytum 
borivilianum, Terminalia bellerica, and Boswellia 
serrata. In all of these plants, liquid medium 
encouraged shoot multiplication, shoot elongation, 
and accumulation of total fresh and dry weight.  
The shoots raised in this medium had a greater 
number of leaves, each with a bigger surface area 

and thicker laminae. For C. paniculatus and B. 
serrata shoot cultures, an increase in chlorophyll 
a, b, and total chlorophyll content was seen.  
The use of glass beads was very successful and did 
not result in any degradation due to hyperhydricity  
in liquid culture. Plantlets may be easily removed 
from the media due to use of glass beads.  
The support matrix used by different researchers 
has been listed in Table 3.

Table 3: Different mechanical support types are utilized at various phases of micropropagation 
of various plant species.

Sr. No. 	 Different supports	 Micropropagation	 Plants	 References
	 systems	 stages

1	 Cotton fibre	 Callus organogenesis	 Artemisia annua	 [83]
2	 Filter paper bridges	 Multiplication	 Chrysanthemum	 [84]
			   and potato
3	 Luffa sponge	 Multiplication and rooting	 Philodendron spp.	 [79]
4	 Paddy straw, jute, coir	 Rooting	 Nicotiana, Beta, 	 [80]
			   Chenopodium, Tectona, 
			   Musa, 
5	 Coir	 Microcorm production	 Gladiolus	 [85]
6	 Sugarcane baggase	 Rooting	 Apple	 [81]
7	 Peat pellets	 Rooting	 Sunflower	 [86]
		  Multiplication	 Terminalia, Celastrus, 	 [87]
			   Feronia,  Boswellia, 
			   Chlorophytum
8	 Glass wool	 Multiplication	 Chrysanthemum	 [84]
9	 Rock wool	 Shoot development	 Eucalyptus citriodora	 [88],[89]
			   Spathiphyllum	 [90]
10	 Nylon cloth	 Multiplication	 Chrysanthemum	 [84]
11	 Polyurethane foams	 Multiplication	 Nicotiana and Vitis	 [91]
			   Gladiolus	 [78]
12	 Foam plastics	 Adventitious root	 Rhododendron	 [92]
		  development
13	 Polyester squares	 Multiplication	 Musa	 [93]
14	 Polyester rafts	 Multiplication	 Anthurium	 [94]
15	 Florailite and vermiculite	 Multiplication	 Ipomoea batatas	 [95]
			   (sweet potato)
16	 Polypropylene Membrane	 Multiplication	 Gladiolus	 [78]
	 Rafts

Conclusion
The main challenge with commercial tissue 
culture technology is its high manufacturing 
costs. The development of micropropagation 

procedures in the laboratory as a component  
of R&D programs should result in a viable technology 
suited for the mass production of desired clones. 
The established methodology that is accessible  
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for a species and the advantages and risks 
attached to it are key factors in determining whether 
commercialization is successful. In numerous 
economic plant species, in vitro propagation  
is limited by lack of contemporary techniques  
to overcome rigorous labour manipulation. Scaled-
up unit cost of micropropagules can be decreased 
by employing creative and more affordable options 
mentioned above. In order to determine the efficacy 
of such methods, pilot-scale testing is required.
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